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Summary. Isotonic distributional regression (IDR) is a powerful nonparametric tech-
nique for the estimation of conditional distributions under order restrictions. In a nut-
shell, IDR learns conditional distributions that are calibrated, and simultaneously opti-
mal relative to comprehensive classes of relevant loss functions, subject to isotonicity
constraints in terms of a partial order on the covariate space. Nonparametric isotonic
quantile regression and nonparametric isotonic binary regression emerge as special
cases. For prediction, we propose an interpolation method that generalizes extant
specifications under the pool adjacent violators algorithm. We recommend the use
of IDR as a generic benchmark technique in probabilistic forecast problems, as it
does not involve any parameter tuning nor implementation choices, except for the se-
lection of a partial order on the covariate space. The method can be combined with
subsample aggregation, with the benefits of smoother regression functions and gains
in computational efficiency. In a simulation study, we compare methods for distribu-
tional regression in terms of the continuous ranked probability score (CRPS) and L,
estimation error, which are closely linked. In a case study on raw and postprocessed
quantitative precipitation forecasts from a leading numerical weather prediction sys-
tem, IDR is competitive with state of the art techniques.

Keywords: conditional distribution estimation; monotonicity; probabilistic forecast;
proper scoring rule; stochastic order; subagging; weather prediction

1. Introduction

There is an emerging consensus in the transdisciplinary literature that regression
analysis should be distributional, with Hothorn et al. (2014) arguing forcefully that

[t|he ultimate goal of regression analysis is to obtain information about
the conditional distribution of a response given a set of explanatory vari-
ables.

This article is published as: Henzi, A., Ziegel, J.F. and Gneiting, T. (2021), Isotonic
distributional regression. Journal of the Royal Statistical Society Series B, https://doi.
org/10.1111/rssb.12450.
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Distributional regression marks a clear break from the classical view of regression,
which has focused on estimating the conditional mean of the response variable in
terms of one or more explanatory variable(s) or covariate(s). Later extensions have
considered other functionals of the conditional distributions, such as quantiles or
expectiles (Koenker, 2005; Newey and Powell, 1987; Schulze Waltrup et al., 2015).
However, the reduction of a conditional distribution to a single-valued functional
results in tremendous loss of information. Therefore, from the perspectives of both
estimation and prediction, regression analysis ought to be distributional.

In the extant literature, both parametric and nonparametric approaches to dis-
tributional regression are available. Parametric approaches assume that the con-
ditional distribution of the response is of a specific type (e.g., Gaussian) with an
analytic relationship between the covariates and the distributional parameters. Key
examples include statistically postprocessed meteorological and hydrologic forecasts,
as exemplified by Gneiting et al. (2005), Schefzik et al. (2013) and Vannitsem
et al. (2018). In powerful semi-parametric variants, the conditional distributions
remain parametric, but the influence of the covariates on the parameter values is
modeled nonparametrically, e.g., by using generalized additive models (Rigby and
Stasinopoulos, 2005; Klein et al., 2015; Umlauf and Kneib, 2018) or modern neural
networks (Rasp and Lerch, 2018; Gasthaus et al., 2019). In related developments,
semiparametric versions of quantile regression (Koenker, 2005) and transformation
methods (Hothorn et al., 2014) can be leveraged for distributional regression.

Nonparametric approaches to distributional regression include kernel or nearest
neighbor methods that depend on a suitable notion of distance on the covariate
space. Then, the empirical distribution of the response for neighboring covariates
in the training set is used for distributional regression, with possible weighting in
dependence on the distance to the covariate value of interest. Kernel smoothing
methods and mixture approaches allow for absolutely continuous conditional distri-
butions (Hall et al., 1999; Dunson et al., 2007; Li and Racine, 2008). Classification
and regression trees partition the covariate space into leaves, and assign constant
regression functions on each leaf (Breiman et al., 1984). Linear aggregation via boot-
strap aggregation (bagging) or subsample aggregation (subagging) yields random
forests (Breiman, 2001), which are increasingly being used to generate conditional
predictive distributions, as proposed by Hothorn et al. (2004) and Meinshausen
(2006).

Isotonicity is a natural constraint in estimation and prediction problems. Con-
sider, e.g., postprocessing techniques in weather forecasting, where the covariates
stem from the output of numerical weather prediction (NWP) models, and the re-
sponse variable is the respective future weather quantity. Intuitively, if the NWP
model output indicates a larger precipitation accumulation, the associated regres-
sion functions ought to be larger as well. Isotonic relationships of this type hold
in a plethora of applied settings. In fact, standard linear regression analysis rests
on the assumption of isotonicity, in the form of monotonicity in the values of the
covariate(s), save for changes in sign.

Concerning nonparametric regression for a conditional functional, such as the
mean or a quantile, there is a sizable literature on estimation under the constraint
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of isotonicity. The classical work of Brunk (1955), Ayer et al. (1955), van Eeden
(1958), Bartholomew (1959a,b) and Miles (1959) is summarized in Barlow et al.
(1972), Robertson et al. (1988) and de Leeuw et al. (2009). Subsequent approaches
include Bayesian and non-Bayesian smoothing techniques (e.g., Mammen, 1991;
Neelon and Dunson, 2004; Dette et al., 2006; Shively et al., 2009), and reviews are
available in Groeneboom and Jongbloed (2014) and Guntuboyina and Sen (2018).

In distributional regression it may not be immediately clear what is meant by
isotonicity, and the literature typically considers one ordinal covariate only (e.g.,
Hogg, 1965; Rojo and El Barmi, 2003; El Barmi and Mukerjee, 2005; Davidov
and Iliopoulos, 2012), with a notable exception being the work of Mosching and
Diimbgen (2020b), whose considerations allow for a real-valued covariate. In the
general case of a partially ordered covariate space, which we consider here, it is
unclear whether semi- or nonparametric techniques might be capable of handling
monotonicity contraints, and suitable notions of isotonicity remain to be developed.

To this end, we assume that the response Y is real-valued, and equip the co-
variate space X with a partial order <. Our aim is to estimate the conditional
distribution of Y given the covariate X, for short £(Y|X), on training data, in
a way that respects the partial order, and we desire to use this estimate for pre-
diction. Formally, a distributional regression technique generates a mapping from
x € X to a probability measure F,, which serves to model the conditional distribu-
tion £(Y|X = z). This mapping is isotonic if z < 2’ implies F, <y F,/, where <y
denotes the usual stochastic order, i.e., G <y H if G(y) > H(y) for y € R, where
we use the same symbols for the probability measures G, H and their associated
conditional cumulative distribution functions (CDFs). Equivalently, G < H holds
if G71(a) < H(a) for a € (0,1), where G~!(a) = inf{y € R : G(y) > a} is the
standard quantile function (Shaked and Shanthikumar, 2007).

Useful comparisons of predictive distributions are in terms of proper scoring
rules, of which the most prominent and most relevant instance is the continu-
ous ranked probability score (CRPS; Matheson and Winkler, 1976; Gneiting and
Raftery, 2007). We show that there is a unique isotonic distributional regression
that is optimal with respect to the CPRS (Theorem 2.1), and refer to it as the
isotonic distributional regression (IDR). As it turns out, IDR is a universal solu-
tion, in that the estimate is optimal with respect to a broad class of proper scoring
rules (Theorem 2.2). Classical special cases such as nonparametric isotonic quan-
tile regression and probabilistic classifiers for threshold-defined binary events are
nested by IDR. Simultaneously, IDR avoids pitfalls commonly associated with non-
parametric distributional regression, such as suboptimal partitions of the covariate
space and level crossing (Athey et al., 2019, p. 1167).

For illustration, consider the joint distribution of (X,Y’), where X is uniform on
(0,10) and

Y | X ~ Gamma(shape = VX, scale = min{max{X, 1}, 6}), (1)

so that L(Y|X = z) < L(Y|X = 2') if 2 < 2'. Figure 1 shows IDR conditional
CDFs and quantiles as estimated on a training set of size n = 600. IDR is capable of
estimating both the strongly right-skewed conditional distributions for lower values
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Fig. 1. Simulation example for a sample of size n = 600 from the distribution in (1): (a)
True conditional CDFs (smooth) and IDR estimates (step functions) for selected values of
the covariate. (b) IDR estimated conditional distributions. The shaded bands correspond
to probability mass 0.10 each, with the darkest shade marking the central interval. Vertical
strips indicate the cross-sections corresponding to the values of the covariate in panel (a).

of X and the more symmetric distributions as X increases. The CDF's are piecewise
constant, and they never cross each other. The computational cost of IDR is of order
at least O(nlogn) and may become prohibitive as n grows. However, IDR can
usefully be combined with subsample aggregation (subagging), much in the spirit
of random forests (Breiman, 2001), with the benefits of reduced computational
cost under large training samples, smoother regression functions, and (frequently)
improved predictive performance.

The remainder of the paper is organized as follows. The methodological core
of the paper is in Section 2, where we prove existence, uniqueness and universality
of the IDR solution, discuss computational issues and asymptotic consistency, and
propose strategies for prediction. In Section 3 we turn to the critical issue of the
choice of a partial order on the covariate space. Section 4 reports on a compara-
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tive simulation study that addresses both prediction and estimation, and Section
5 is devoted to a case study on probabilistic quantitative precipitation forecasts,
with covariates provided by the European Centre for Medium-Range Weather Fore-
casts (ECMWF) ensemble system. Precipitation accumulations feature unfavorable
properties that challenge parametric approaches to distributional regression: The
conditional distributions have a point mass at zero, and they are continuous and
right skewed on the positive half-axis. In a comparison to state-of-the-art methods
that have been developed specifically for the purpose, namely Bayesian Model Av-
eraging (BMA; Sloughter et al., 2007), Ensemble Model Output Statistics (EMOS;
Scheuerer, 2014), and Heteroscedastic Censored Logistic Regression (HCLR; Mess-
ner et al., 2014), the (out-of-sample) predictive performance of IDR is competitive,
despite the method being generic, and being fully automatic once a partial order
on the covariate space has been chosen.

We close the paper with a discussion in Section 6, where we argue that IDR pro-
vides a very widely applicable, competitive benchmark in probabilistic forecasting
problems. The use of benchmark techniques has been called for across application
domains (e.g., Rossi, 2013; Pappenberger et al., 2015; Basel Committee on Banking
Supervision, 2016; Vogel et al., 2018), and suitable methods should be competitive
in terms of predictive performance, while avoiding implementation decisions that
may vary from user to user. IDR is well suited to this purpose, as it is entirely
generic, does not involve any implementation decisions, other than the choice of the
partial order, applies to all types of real-valued outcomes with discrete, continu-
ous or mixed discrete-continuous distributions, and accommodates general types of
covariate spaces.

2. Isotonic distributional regression

We proceed to introduce the isotonic distributional regression (IDR) technique. To
this end, we first review basic facts on proper scoring rules and notions of calibra-
tion. Then we define the IDR solution, prove existence, uniqueness and universality,
and discuss its computation and asymptotic consistency. Thereafter, we turn from
estimation to prediction and describe how IDR can be used in out-of-sample fore-
casting. Throughout, we identify a Borel probability measure on the real line R
with its cumulative distribution function (CDF), and we denote the extended real
line by R = [~o00, 00].

2.1.  Preliminaries

Following Gneiting and Raftery (2007), we argue that distributional regression tech-
niques should be compared and evaluated using proper scoring rules. A proper
scoring rule is a function S : P x R — R, where P is a suitable class of proba-
bility measures on R, such that S(F,-) is measurable for any F' € P, the integral
[ S(G,y) dF (y) exists, and

/ S(F,y) dF(y) < / S(G,y) dF(y)
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for all F,G € P. A key example is the continuous ranked probability score (CRPS),
which is defined for all Borel probability measures, and given as

CRPS(F,y) = /R (F(2) — 1{y < 2})°

Introduced by Matheson and Winkler (1976), the CRPS has become popular across
application areas and methodological communities, both for the purposes of evalu-
ating predictive performance and as a loss function in estimation; see, e,g., Hersbach
(2000), Gneiting et al. (2005), Hothorn et al. (2014), Pappenberger et al. (2015),
Rasp and Lerch (2018) and Gasthaus et al. (2019). The CRPS is reported in the
same unit as the response variable, and it reduces to the absolute error, |z — y|, if
F' is the point or Dirac measure in x € R.

Results in Laio and Tamea (2007), Ehm et al. (2016) and Ben Bouallegue et al.
(2018) imply that the CRPS can be represented equivalently as

CRPS(F,y) =2 QS (F,y)da (2)

/01/ J(F,y)d6da (3)
//O1 (F.y)deds, (@)

where the mixture representation (2) is in terms of the asymmetric piecewise linear
or pinball loss,

1—a)(FHa)—y), y<FHa),
aly—F~Ha)), y > F (),

which is customarily thought of as a quantile loss function, but can be identified
with a proper scoring rule (Gneiting, 2011, Theorem 3). The representations (3)
and (4) express the CRPS in terms of the elementary or extremal scoring functions
for the a-quantile functional, namely,

QS,(Fry) = { (5)

l—a, y<0<F o),
Sp(Fy)=R0a,  F Y a)<O<y, (6)
0, otherwise,

where 6 € R; and for probability assessments of the binary outcome 1{y < z} at
the threshold value z € R, namely

l—¢, F(2)<e y<z,
SZC(F, y) =< c, F(z)>e¢ y>z, (7)
0, otherwise,

where ¢ € (0,1). For background information on elementary or extremal scoring
functions and related concepts see Ehm et al. (2016).
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Predictive distributions ought to be calibrated (Dawid, 1984; Diebold et al., 1998;
Gneiting et al., 2007), in the broad sense that they should be statistically compati-
ble with the responses, and various notions of calibration have been proposed and
studied. In the spirit of Gneiting and Ranjan (2013), we consider the joint distri-
bution P of the response Y and the distributional regression F'x. The most widely
used criterion is probabilistic calibration, which requires that the probability integral
transform (PIT), namely, the random variable

Z=Fx(Y-)+V (Fx(Y)-Fx(Y-)), (8)

be standard uniform, where Fx(Y —) = lim,3y Fx(y) and V is a standard uniform
variable that is independent of Fxy and Y. If F'x is continuous the PIT is simply
Z = Fx(Y). Here we introduce the novel notion of threshold calibration, requiring
that

P(Y <y|Fx(y)) = Fx(y) 9)

almost surely for y € R, which implies marginal calibration, defined as P(Y < y) =
E(Fx(y)) for y € R. If Fx = L(Y|X) then it is calibrated in any of the above
senses (Gneiting and Ranjan, 2013, Theorem 2.8).

2.2. Existence, uniqueness and universality

A partial order relation < on a set X has the same properties as a total order,

namely reflexivity, antisymmetry and transitivity, except that the elements need

not be comparable, i.e., there might be elements x € X and 2/ € X such that

neither x < 2/ nor 2’ < x holds. A key example is the componentwise order on R™.
For a positive integer n and a partially ordered set X', we define the classes

X{Z:{m:(ml,...,xn)e/\j‘”:$1j...j$n}’
Xl'={z=(z1,...,2,) €EX" 11 = --- = 2}

of the increasingly and decreasingly (totally) ordered tuples in X', respectively. Sim-
ilarly, given a further partially ordered set Q and a vector x = (z1,...,z,) € X",
the classes

Ae={a= (a1, ,qn) € Q" : ¢ 2 g5 if 2 <25},
Qlz={a= (1, ,qn) € Q" 1 qi = ¢q; if 7 X 75}

comprise the increasingly and decreasingly (partially) ordered tuples in Q, with the
order induced by the tuple & and the partial order < on X.

Let I C R be an interval, and let S be a proper scoring rule with respect to a class
‘P of probability distributions on I that contains all distributions with finite support.
Given training data in the form of a covariate vector & = (z1,...,2,) € A" and
response vector ¥y = (y1,...,yn) € I, we may interpret any mapping from x € X"
to P™ as a distributional regression function. Throughout, we equip P with the
usual stochastic order.
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Definition 2.1 (S-based regression). An element F' = (Fy,...,F,) € P" is an S-
based isotonic regression of y € I on z € X", if it is a minimizer of the empirical

loss
n

1
(s(F) = — Eu 7
S(F) = 1 3 S(Fw)
over all F' = (F,...,Fy,) in Pf,.

In plain words, an S-based isotonic regression achieves the best fit in terms of the
scoring rule S, subject to the conditional CDFs F,... E, satisfying partial order
constraints induced by the covariate values x1,...,x,. The definition and the sub-
sequent results can be extended to losses of the form ls(F) = > | w; S(F}, y;) with
rational, strictly positive weights wi,...,w,. The adaptations are straightforward
and left to the reader.

Furthermore, the definition of an S-based isotonic regression as a minimizer of
fg continues to apply when X is equipped with a pre- or quasiorder < instead of a
partial order. Preorders are not necessarily antisymmetric, and so there might be
elements z, 2’ such that * < 2’ and 2/ < x but 2/ # z. In this setting, we define z
and 2’ to be equivalent if x < 2’ and 2’ < x, and set [z] <, [2/] if representatives u, v/
of the equivalence classes [z], [¢'] satisfy u < «’. Then the binary relation <, defines
a partial order on the set of equivalence classes, and the S-based isotonic regression
with the new covariates and the partial order <, coincides with the original S-based
isotonic regression.

In Appendix A we prove the following result.

Theorem 2.1 (existence and uniqueness). There exists a unique CRPS-based iso-
tonic regression F € P" of y on x.

We refer to this unique F as the isotonic distributional regression (IDR) of y on
z. In the particular case of a total order on the covariate space, and assuming that
x1 < -+ < @y, for each z € I the solution F(z) = (Fi(2),..., F,(z)) is given by

. _ 1 J
File) = min x5y ) Hu<s) (10)

for i = 1,...,n; see egs. (1.9)—(1.13) of Barlow et al. (1972). A similar max-min
formula applies under partial orders (Robertson and Wright, 1980; Jordan et al.,
2021), and it follows that Fyis piecewise constant with any points of discontinuity
at Yi,...,Yn-

At first sight, the specific choice of the CRPS as a loss function may seem arbi-
trary. However, the subsequent result, which we prove in Appendix A, reveals that
IDR. is simultaneously optimal with respect to broad classes of proper scoring rules
that include all relevant choices in the extant literature. The popular logarithmic
score allows for the comparison of absolutely continuous distributions with respect
to a fixed dominating measure only and thus is not applicable here. Statements
concerning calibration are with respect to the empirical distribution of the training

data (xbyl)? ) (:En)yn)
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Theorem 2.2 (universality). The IDR solution F of y on x is threshold calibrated
and has the following properties.

i) The IDR solution F is an S-based isotonic regression of y on x under any
scoring rule of the form

S(F,y) = / SQ,(F.y) dH(a,6) (11)
(0,1)xR '
or
S(F,y) = / SP (F.y) dM(z.¢), (12)
Rx(0,1)

P

z,c
mentary probability scoring rule (7), and H and M are locally finite Borel
measures on (0,1) x R and R x (0, 1), respectively.

where Sge is the elementary quantile scoring function (6), S, . is the ele-

ii) For every o € (0,1) it holds that F~1(a) = (7Y (@), ..., E7Y«)) ds a mini-
mizer of

%Zsa(eia Yi) (13)
i=1

over all @ = (01,...,0,) € I?_, under any function sq : I x I — R which is

T,$7
left-continuous in both arguments and such that S(F,y) = so(F~1(a),y) is a

proper scoring rule on P.

iii) For every threshold value z € I, it is true that F'(z) = (F1(2),...,Fu(2)) is a
minimizer of
1 n
S st 1 < ) (14)
i=1

over all ordered tuples n = (ni,...,nn) € [0,1]],, under any function s :
[0,1] x {0,1} — R that is a proper scoring rule for binary events, which is
left-continuous in its first argument, satisfies s(0,y) = lim,0s(p,y), and is
real-valued, except possibly s(0,1) = —oo or s(1,0) = —oo.

The quantile weighted and threshold weighted versions of the CRPS studied
by Gneiting and Ranjan (2011) arise from (11) and (12) with H = Gy ® A and
M = XA ® G1, where X\ denotes the Lebesgue measure, and Gy and G are o-finite
Borel measures on (0,1) and R, respectively. If Gy and G are Lebesgue measures,
we recover the mixture representations (3) and (4) of the CRPS. By results of Ehm
et al. (2016), if H is concentrated on {a} x R and M is concentrated on {z} x (0, 1),
these representations cover essentially all proper scoring rules that depend on the
predictive distribution F via F~!(a) or F(z) only, yielding universal optimality in
statements in parts ii) and iii) of Theorem 2.2.

In particular, as a special case of (13), the IDR solution is a minimizer of the
quantile loss under the asymmetric piecewise linear or pinball function (5) that lies
at the heart of quantile regression (Koenker, 2005). Consequently, as the mixture
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representation (2) of the CRPS may suggest, IDR nests classical nonparametric iso-
tonic quantile regression as introduced and studied by Robertson and Wright (1975)
and Casady and Cryer (1976). In other words, part ii) of Theorem 2.2 demonstrates
that, if we (hypothetically) perform nonparametric isotonic quantile regression at
every level o € (0,1) and piece the conditional quantile functions together, we re-
cover the IDR solution. However, the IDR solution is readily computable (Section
2.3), without invoking approximations or truncations, unlike brute force approaches
to simultaneous quantile regressions. Loss functions of the form (13) also include
the interval score (Winkler, 1972; Gneiting and Raftery, 2007, eq. (43)), which con-
stitutes the most used proper performance measure for interval forecasts.

In the special case of a binary response variable, we see from iii) and (14) that
the IDR solution is an S-based isotonic regression under just any applicable proper
scoring rule S. Furthermore, threshold calibration is the strongest possible notion
of calibration in this setting (Gneiting and Ranjan, 2013, Theorem 2.11), so the
IDR solution is universal in every regard. In the further special case of a total
order on the covariate space, the IDR and pool adjacent violators (PAV) algorithm
solutions coincide, and the statement in iii) is essentially equivalent to Theorem
1.12 of Barlow et al. (1972). In particular, the IDR or PAV solution yields both the
nonparametric maximum likelihood estimate and the nonparametric least squares
estimate under the constraint of isotonicity. The latter suggests a computational
implementation via quadratic programming, to which we tend now.

2.3. Computational aspects

The key observation towards a computational implementation is the aforementioned
special case of (14), according to which the IDR solution F' € P™ of y € R" on
T € X" satisfies

n
F(z) =arg min (i — 1{ys < 2})° (15)

n€l0.17 , *—
at every threshold value z € R. In this light, the computation of the IDR CDF at
any fixed threshold reduces to a quadratic programming problem. The above target
function is constant in between the unique values of y1,...,yn, say 41 < -+ < Um,
and so it suffices to estimate the CDF's at these points only. In contrast, exact imple-
mentations based on quantiles would need to consider all levels of the form i/j with
integers 1 <1 < j < n, which is computationally prohibitive. In the threshold-based
approach, the overall cost depends on the quadratic programming solver applied,
and the computation becomes much faster if recursive relations between consecutive
conditional CDFs F'(yy) and F'(g,—1) are taken advantage of. In the case of a total
order, Henzi et al. (2020) describe a recursive adaptation of the PAV algorithm to
IDR that considerably reduces the computation time as compared to a naive im-
plementation which does not take into account recursive relations. Under general
partial orders, active set methods for solutions to the quadratic programming prob-
lem (15) have been discussed by de Leeuw et al. (2009). In our implementation, we
use the powerful quadratic programming solver OSQP (Stellato et al., 2020) as sup-
plied by the package osqgp in the statistical programming environment R (Stellato
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Fig. 2. Simulation example for a sample of size n = 10000 from the distribution in (1).
The true conditional CDFs (smooth dashed graphs) are compared to IDR estimates (step
functions) based on (a) the full training sample of size » = 10 000 and (b) linear aggregation
of IDR estimates on 100 subsamples of size 1000 each.

et al., 2019; R Core Team, 2020), which can be warm-started efficiently by taking
F(fjs_1) as a starting point for the computation of F({).

Clearly, a challenge in the computational implementation of IDR with general
partial orders is that the number of variables in the quadratic programming prob-
lem (15) grows at a rate of O(n). As a remedy, we propose subsample aggregation,
much in the spirit of random forests that rely on bootstrap aggregated (bagged)
classification and regression trees (Breiman, 1996, 2001). It was observed early on
that random forests generate conditional predictive distributions (Hothorn et al.,
2004; Meinshausen, 2006), and recent applications include the statistical postpro-
cessing of ensemble weather forecasts (Taillardat et al., 2016; Schlosser et al., 2019;
Taillardat et al., 2019). Biithlmann and Yu (2002) and Buja and Stiitzle (2006) ar-
gue forcefully that subsample aggregation (subagging) tends to be equally effective
as bagging, but at considerably lower computational cost.

In view of the superlinear computational costs of IDR, smart uses of subsample
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aggregation yield major efficiency gains, taking into account that the estimation on
different subsamples can be performed in parallel. Isotonicity is preserved under
linear aggregation, and the aggregated conditional CDFs can be inverted to gen-
erate isotonic conditional quantile functions, with the further benefit of smoother
estimates in continuous settings. A detailed investigation of optimal subsample ag-
gregation for IDR is a topic for future research. For illustration, Figure 2 returns
to the simulation example in Figure 1, but now with a much larger training sam-
ple of size n = 10000 from the distribution in (1). Linear aggregation based on
100 subsamples (drawn without replacement) of size n = 1000 each is superior to
the brute force approach on the full training set in terms of estimation accuracy.
The computation on the full dataset for this simulation example takes 11.7 seconds
for the naive implementation, but only 1.1 seconds for the sequential algorithm of
Henzi et al. (2020). Subagging gives computation times of 9.9 and 2.5 seconds,
respectively, or 1.8 and 0.5 seconds when parallelized over eight cores.f

2.4. Consistency

We proceed to prove uniform consistency of the IDR estimator. While strong consis-
tency of nonparametric isotonic quantile regression for single quantiles was proved
decades ago (Robertson and Wright, 1975; Casady and Cryer, 1976), uniform con-
sistency and rates of convergence for the IDR estimator have been established only
recently, and exclusively in the case of a total order, see El Barmi and Mukerjee
(2005, Theorem 1) and Mosching and Diimbgen (2020b, Theorem 3.3).

For z € X and y € R, let Fm(y) denote the IDR estimate based on fixed or
random pairs (X1,Y1),..., (Xn,Yn). As introduced thus far, the IDR solution F=
(Fl, ... ,Fn) is defined at the covariate values Xi,...,X,, € X only. For general
x € X, we merely assume that Fx(y) is some value in between the bounds given by

max Fi(y) < Fu(y) < min Fy(y). (16)
i€s(z) i€p(z)
Here, we define the sets of the indices of direct predecessors and direct successors of
x € X among the covariate values as

ple)={ie{l,...n}: X; 2 X; 22 = X;=X;,j=1,....n}  (17)

and
s(x):{ze{l,,n}.ij]sz — Xj:Xiaj:L"'7n}v (18)

respectively.

In Appendix B we establish the following consistency theorem, which covers key
examples of partial orders and is based on strictly weaker assumptions than the
results of Mosching and Diimbgen (2020b). However, in contrast to their work,
we do not provide rates of convergence. The choice X = [0,1]¢ for the covari-
ate space merely serves to simplify the presentation: As IDR is invariant under

1With Intel(R) Xeon(R) E5-2630 v4 2.20GHz CPUs, in R (R Core Team, 2020), using the
doParallel package for parallelization. Times reported are averages over 100 replicates.
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strictly isotonic transformations, any covariate vector X = (X1,...,Xy) € R? can
be transformed to have support in [0, 1]¢, and the componentwise partial order can
be replaced by any weaker preorder. A key assumption uses the concept of an
antichain in a partially ordered set (S, <), which is a subset A C S that does not
admit comparisons, in the sense that u < v for u,v € A implies u = v. As we discuss
subsequently, results of Brightwell (1992) imply that the respective distributional
condition is mild.

Theorem 2.3 (uniform consistency). Let X = [0,1]? be endowed with the compo-
nentwise partial order and the norm ||u| = max;—1,_q|u;|. Let further (Xp;, Yni) €
0,11 xR, n € N, i = 1,...,n, be a triangular array such that (X,1,Yn1),...,
(Xon, Yon) are independent and identically distributed random vectors for each n €
N, and let S, = {Xn1,..., Xnn}. Assume that

(i) for all non-degenerate rectangles J C X, there exists a constant ¢y > 0 such
that
#(SnNJ) > ney

with asymptotic probability one, i.e., if A, denotes the event that #(S,NJ) >
ncy, then P(A,) — 1 as n — oo;

(i1) for some v € (0,1),
max{#A : A C S, is antichain} < n’
with asymptotic probability one.

Assume further that the true conditional CDFs Fy(y) = P(Yn < y | X = o)
satisfy

(iii) Fy(y) is decreasing in = for all y € R;
(iv) for every n > 0, there exists r > 0 such that

sup{| Fz(y) — Fo (y)| : 22" € 0,17, |l — 2’| <7, y € R} <.

Then for every € >0 and § > 0,

lim P sup |Eo(y) — Fx(y)| > €| =0. (19)
n—00 z€[6,1-6]¢, yeR

Assumption (i) requires that the covariates are sufficiently dense in X, as is sat-
isfied under strictly positive Lebesgue densities on X. In order to derive rates of
convergence, the size of the rectangles J in (i) would need to decrease with n, as in
condition (A.2) of Mésching and Diimbgen (2020b); we leave this type of extension
as a direction for future work. Assumption (iii) is the basic model assumption of
IDR, while assumption (iv) requires uniform continuity of the conditional distribu-
tions, which is weaker than Holder continuity in condition (A.1) of Mésching and
Diimbgen (2020D).
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Assumption (ii), which is always satisfied in the case of a total order, calls for a
more detailed discussion. In words, the maximal number of mutually incomparable
elements needs to grow at a rate slower than n”. Evidently, the easier elements
can be ordered, the smaller the maximal antichain. Consequently, Theorem 2.3
continues to hold under the empirical stochastic order and the empirical increasing
convex order on the covariates introduced in Section 3.3, and indeed under any
preorder that is weaker than the componentwise order. The key to understanding
the distributional implications of (ii) is Corollary 2 in Brightwell (1992), which states
that for a sequence of independent random vectors from a uniform population on
[0, 1]¢ the size of a maximal antichain grows at a rate of n'~/%; see also the remark
following the proof of Theorem 2.3 in Appendix B.

As comparability under the componentwise order is preserved under monotonic
transformations, any covariate vector X € R? that can be obtained as a mono-
tone transformation of a uniform random vector of arbitrary dimension guarantees
(ii). This includes, e.g., all Gaussian random vectors with nonnegative correlation
coefficients. In this light, assumption (ii) is rather weak, and well in line with the
intuition that for multivariate isotonic (distributional) regression to work well, there
ought be at least minor positive dependence between the covariates. In the context
of our case study in Section 5, high positive correlations between the covariates are
the rule, as exemplified by Table 3 in Raftery et al. (2005).

2.5. Prediction
As noted, the IDR solution F' = (Fy,...,F,) € Pf, is defined at the covariate
values x1,...,x, € X only. Generally, if a (not necessarily optimal) distributional
regression F' = (Fy,..., F,) € Pl is available, a key task in practice is to make a
prediction at a new covariate value € X where x & {x1,...,z,}. We denote the
respective predictive CDF by F.

In the specific case X = R of a single real-valued covariate there is a simple
way of doing this, as frequently implemented in concert with the PAV algorithm.
For simplicity we suppose that 1 < -+ < z,. If x < 1 we may let F' = Fy; if

x € (x;,2,41) for some i € {1,...,n — 1} we may interpolate linearly, so that
T — Tin] — T
F(z) = ——F(2) + ZJr7Fi+1(,z)
Ti41 — T4 Tit1 — X4

for z € R, and if x > z,, we may set F' = F,,. However, approaches that are based
on interpolation do not extend to a generic covariate space, which may or may not
be equipped with a metric.

In contrast, the method we describe now, which generalizes a proposal by Wilbur
et al. (2005), solely uses information supplied by the partial order < on the covariate
space X. For a general covariate value x € X, the sets of the indices of direct

predecessors and direct successors among the covariate values zi,...,x, in the
training data is defined as at (17) and (18), respectively with Xi,..., X, replaced
by x1,...,xy,. If the covariate space X is totally ordered, these sets contain at most

one element. If the order is partial but not total, p(z) and s(z) may, and frequently
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do, contain more than one element. Assuming that p(z) and s(x) are non-empty,
any predictive CDF F' that is consistent with F' must satisfy

max F;(z) < F(z) < min F;(2) (20)

i€s(x) i€p(x)

at all threshold values z € R. We now let F' be the pointwise arithmetic average of
these bounds, i.e.,
1
F(z)= = ( max Fj(z) + min Fz(z)) (21)
2 \ies(x) iep(x)

for z € R. If s(x) is empty while p(z) is non-empty, or vice-versa, a natural choice,
which we employ hereinafter, is to let F' equal the available bound given by the
non-empty set. If x is not comparable to any of z1,...,z, the training data lack
information about the conditional distribution at x, and a natural approach, which
we adopt and implement, is to set F' equal to the empirical distribution of the
response values 41, ..., Yn-

The difference between the bounds (if any) in (20) might be a useful measure
of estimation uncertainty and could be explored as a promising avenue towards the
quantification of ambiguity and generation of second-order probabilities (Ellsberg,
1961; Seo, 2009). In the context of ensemble weather forecasts, the assessment of
ambiguity has been pioneered by Allen and Eckel (2012). Interesting links arise
when the envelope in (20) is interpreted in the spirit of randomized predictive sys-
tems and conformal estimates as studied by Vovk et al. (2019); compare, e.g., their
Figure 5 with our Figure 4b below.

3. Partial orders

The choice of a sufficiently informative partial order on the covariate space is critical
to any successful application of IDR. In the extreme case of distinct, totally ordered

covariate values z1, ..., x, € X and a perfect monotonic relationship to the response
values y1, . .., yn, the IDR distribution associated with x; is simply the point measure
in y;, for ¢ = 1,...,n. The same happens in the other extreme, when there are no

order relations at all. Hence, the partial order serves to regularize the IDR solution.

Thus far, we have simply assumed that the covariate space X’ is equipped with a
partial order =<, without specifying how the order might be defined. If X C R?, the
usual componentwise order will be suitable in many applications, and we investigate
it in Section 3.1. For covariates that are ordinal and admit a ranking in terms of
importance, a lexicographic order may be suitable.

If groups of covariates are exchangeable, as in our case study on quantitative
precipitation forecasts, other types of order relations need to be considered. In
Sections 3.2 and 3.3 we study relations that are tailored to this setting, namely,
the empirical stochastic order and empirical increasing convex order. Proofs are
deferred to Appendix C.
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3.1. Componentwise order

Let © = (x1,...,24) and 2/ = (2], ...,2/) denote elements of the covariate space
R?. The most commonly used partial order in multivariate isotonic regression is
the componentwise order defined by

/

r=2 = ;< fori=1,...,d.

This order becomes weaker as the dimension d of the covariate space increases:
If & = (21,...,0q,7q41) and &' = (7,..., 20,2}, ;) then x =< 2/ is a necessary
condition for # < Z/. The following result is an immediate consequence of this
observation and the structure of the optimization problem in Definition 2.1.

Proposition 3.1. Let x = (z1,...,x,) and * = (z7,...,x}) have components
z; = (i1, .., 2iq) € R and 2t = (v, . .. s Tids Tidi1) € R for i=1,...,n, and
let S be a proper scoring rule.
Then if R® and R are equipped with the componentwise partial order, and
F and F* denote S-based isotonic regressions of y on x and x*, respectively, it is
true that
lg(EF™) < tg(F).

In simple words, under the componentwise partial order, the inclusion of further
covariates can only improve the in-sample fit. This behaviour resembles linear
regression, where the addition of covariates can only improve the (unadjusted) R-
square.

3.2. Empirical stochastic order
We now define a relation that is based on stochastic dominance and invariant under
permutation.

Definition 3.1. Let z = (x1,...,24) and 2’ = (2},...,2/,) denote elements of RY.
Then z is smaller than or equal to 2’ in empirical stochastic order, for short x <¢ /,
if the empirical distribution of 1, ..., x4 is smaller than the empirical distribution
of 2, ..., 2/, in the usual stochastic order.

This relation is tailored to groups of exchangeable, real-valued covariates. The
following results summarizes its properties and compares to the componentwise
order, which we denote by <.

Proposition 3.2. Let © = (z1,...,24) and o’ = (2,...,2)) denote elements of
R with order statistics ry <o < xg) and :1:’(1) <. < x’(d).

i) The relation x Zs o' is equivalent to x;) < az’(i) fori=1,....,d.
i) If © <2’ then x <4 2’

iii) If © < 2’ and x and x’ are comparable in the componentwise partial order,
then x = z'.
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w) If © 2 o' and 2’ =<4 = then x and 2’ are permutations of each other.
Consequently, the relation =4 defines a partial order on R%l.

In a nutshell, the empirical stochastic order is equivalent to the componentwise
order on the sorted elements, and this relation is weaker than the componentwise
order. However, unlike the componentwise order, the empirical stochastic order
does not degenerate as further covariates are added. To the contrary, empirical
distributions of larger numbers of exchangeable variables become more informative
and more easily comparable.

3.3. Empirical increasing convex order

In applications, the empirical stochastic order might be too strong, in the sense
that it does not generate sufficiently informative constraints. In this light, we now
define a weaker partial order on R%l, which also is based on a partial order for
probability measures. Specifically, let X and X’ be random variables with CDFs F
and F’'. Then F is smaller than F’ in increasing convex order if E(¢(X)) < E(¢(X’))
for all increasing convex functions ¢ such that the expectations exist (Shaked and
Shanthikumar, 2007, Section 4.A.1).

Definition 3.2. Let z = (z1,...,24) and 2’ = (z],...,2/,) denote elements of R<.
Then z is smaller than or equal to 2’ in empirical increasing convex order, for short
T =iex @, if the empirical distribution of z1,..., x4 is smaller than the empirical
distribution of /, ...,/ in increasing convex order.

This notion provides another meaningful relation for groups of exchangeable
covariates. The following result summarizes its properties and relates it to the
empirical stochastic order.

Proposition 3.3. Let x = L xq) and ©' = (2),...,2)) denote elements of

= (11
R with order statistics Ty < - < T(q) and :1:/(1) <. < :c’(d).

i) The relation x <iex *' is equivalent to

ISH
QL

Z%) <D % for i=1,....d

i) If x =g o' then x <icx 2.

iii) If x <jex @' then
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Componentwise Empirical stochastic Empirical increasing convex

Fig. 3. Regions of smaller, greater and incomparable elements in the positive quadrant
of R?, as compared to the point (1,3), for the (left) componentwise, (middle) empirical
stochastic and (right) empirical increasing convex order. Coloured areas below (above)
of (1,3) correspond to smaller (greater) elements, while blank areas contain elements
incomparable to (1, 3) in the given partial order.

w) If © Sjex ¢’ and ©' <jx x then x and x' are permutations of each other.
Consequently, the relation <icx defines a partial order on R?.

Figure 3 illustrates the various types of relations for points in the positive quad-
rant of R?. As reflected by the nested character of the regions, the componentwise
order is stronger than the empirical stochastic order, which in turn is stronger than
the empirical increasing convex order. The latter is equivalent to weak majorization
as studied by Marshall et al. (2011). In the special case of vectors with non-negative
entries, their Corollary C.5 implies that 2 € R is dominated by 2’ € R? in empirical
increasing convex order if, and only if, it lies in the convex hull of the points of the
form (§1x;(1), e ,fdl‘;(d)), where 7 is a permutation and §; € {0,1} fori=1,...,d.

4. Simulation study

Since we view IDR primarily as a tool for prediction, we compare it to other distri-
butional regression methods in terms of predictive performance on continuous and
discrete, univariate simulation examples, as measured by the CRPS. However, as
noted below and formalized in Appendix D, the CRPS links asymptotically to Lo
estimation error, so under large validation samples prediction and estimation are as-
sessed simultaneously. A detailed comparative study on mixed discrete-continuous
data with a multivariate covariate vector is given in the case study in the next
section.

Here, our simulation scenarios build on the illustrating example in the introduc-
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tion. Specifically, we draw a covariate X ~ Unif(0, 10) and then

Y1 | X ~ Gamma(shape = VX, scale = min{max{X, 1}, 6}),
Yo | X =Y | X+10-1{X > 5},

3| X =Y1|X -2 1{X >7},

Yy | X ~ Poisson(A = min{max{X, 1},6})}).

23
24
25
26

~~ ~~ —~

)
)
)
)

Under each scenario we generate 500 training sets of size n = 500, 1000, 2 000, and
4000 each, fit distributional regression models, and validate on a test set of size
m = 5000. For comparison with IDR, we use a nonparametric kernel (or nearest
neighbor) smoothing technique (NP; Li and Racine, 2008), semiparametric quan-
tile regression with monotone rearrangement (SQR; Koenker 2005; Chernozhukov
et al. 2010), conditional transformation models (TRAM; Hothorn et al., 2014), and
distributional or quantile random forests (QRF; Meinshausen 2006; Athey et al.
2019). These methods have been chosen as they are not subject to restrictive as-
sumptions on the distribution of the response variable and have well established
and well documented implementations in the statistical programming environment
R (R Core Team, 2020). We also include the ideal forecast, i.e., the true conditional
distribution of the response given the covariate, in the comparison.

Implementation details for the various methods are given in Table 3 in Appendix
E. Here we only note that QRF uses the grf package (Tibshirani et al., 2020)
with a splitting rule that is tailored to quantiles (Athey et al., 2019). We see
that, unlike IDR, its competitors rely on manual intervention and tuning. For
example, QRF's perform poorly under the default value of 5 for the tuning parameter
min.node.size, which we have raised to 40. Further improvement may arise when
tuning parameters, such as honesty fraction and node size, are judiciously adjusted
to the specific scenario and training sample size at hand. In contrast, IDR is entirely
free of implementation decisions, except for the subagging variant, IDRg},g, where
we average predictions based on estimates on 100 subsamples of size n/2 each.

Scenario (23) is the same as in the introduction and illustrated in Figure 1. It
has a smooth covariate-response relationship, and NP, SQR, and even the misspec-
ified TRAM technique, which are tailored to this type of setting, outperform QRF
and IDR. However, the assumption of continuity in the response is crucial, as the
results under the discontinuous scenario (24) demonstrate, where IDR and IDRgp,g
perform best. In the non-isotonic scenario (25) IDR and IDRgp, retain acceptable
performance, even though the key assumption is violated. Not surprisingly, SQR
faces challenges in the Poisson scenario (26), where the conditional quantile func-
tions are piecewise constant, and IDR is outperformed only by TRAM. Throughout,
the simplistic subagging variant of IDR has slightly lower mean CRPS than the de-
fault variant that is estimated on the full training set, and it would be interesting
to explore the relation to the super-efficiency phenomenon described by Banerjee
et al. (2019).

These results lend support to our belief that IDR can serve as a universal bench-
mark in probabilistic forecasting and distributional regression problems. For suffi-
ciently large training samples, IDR offers competitive performance under any type



20 Tilmann Gneiting

Table 1. Mean CRPS in smooth (23), discontinuous (24), non-isotonic
(25), and discrete (26) simulation scenarios with training sets of size n.

‘ Smooth (23) ‘ Discontinuous (24)
n | 500 1000 2000 4000 | 500 1000 2000 4000
NP 3.561 3.542 3.532 3.525 | 3.614 3.582 3.562 3.549

SQR 3.571  3.543 3.530 3.524 | 3.647 3.619 3.606 3.600
TRAM | 3.560 3.543 3.535 3.531 | 3.642 3.625 3.616 3.612
QRF 3.589 3.561 3.555 3.553 | 3.614 3.576 3.561 3.556
IDR 3.604 3.568 3.548 3.535 | 3.628 3.581 3.555 3.540
IDRgpe | 3.595 3.561 3.543 3.532 | 3.620 3.577 3.551 3.537
Ideal 3.516 3.516 3.516 3.516 | 3.516 3.516 3.516 3.516

| Non-isotonic (25) | Discrete (26)
n ‘ 500 1000 2000 4000 500 1000 2000 4000

NP 3.564 3.544 3.534 3.527 | 1.136 1.131 1.128 1.126
SQR 3.574 3.546 3.533 3.527 | 1.129 1.121 1.116 1.114
TRAM | 3.566 3.549 3.543 3.539 | 1.115 1.110 1.107 1.106
QRF 3.587 3.560 3.555 3.553 | 1.121 1.113 1.112 1.112
IDR 3.605 3.569 3.549 3.536 | 1.130 1.119 1.113 1.109
IDRgpe | 3.597 3.564 3.545 3.534 | 1.128 1.118 1.112 1.109
Ideal 3.516 3.516 3.516 3.516 | 1.104 1.104 1.104 1.104

of type of linearly ordered outcome, without reliance on tuning parameters or other
implementation choices, except when subsampling is employed.

5. Case study: Probabilistic quantitative precipitation forecasts

The past decades have witnessed tremendous progress in the science and practice
of weather prediction (Bauer et al., 2015). Arguably, the most radical innovation
consists in the operational implementation of ensemble systems and an accompany-
ing culture change from point forecasts to distributional forecasts (Leutbecher and
Palmer, 2008). An ensemble system comprises multiple runs of numerical weather
prediction (NWP) models, where the runs or members differ from each other in
initial conditions and numerical-physical representations of atmospheric processes.

Ideally, one would like to interpret an ensemble forecast as a random sample
from the conditional distribution of future states of the atmosphere. However, this
is rarely advisable in practice, as ensemble forecasts are subject to biases and dis-
persion errors, thereby calling for some form of statistical postprocessing (Gneiting
and Raftery, 2005; Vannitsem et al., 2018). This is typically done by fitting a distri-
butional regression model, with the weather variable of interest being the response
variable, and the members of the forecast ensemble constituting the covariates, and
applying this model to future NWP output, to obtain conditional predictive distri-
butions for future weather quantities. State of the art techniques include Bayesian
Model Averaging (BMA; Raftery et al., 2005; Sloughter et al., 2007), Ensemble



Isotonic Distributional Regression 21

Table 2. Meteorological stations at airports, with International Air
Transport Association (IATA) airport code, World Meteorological Or-
ganization (WMO) station ID, and data availability in days (years).

TATA Code WMO ID Data Availability

Brussels, Belgium BRU 06449 3406 (9.3)
Frankfurt, Germany FRA 10637 3617 (9.9)
London, UK LHR 03772 2256 (6.2)
Zurich, Switzerland ZRH 06670 3241 (8.9)

Model Output Statistics (EMOS; Gneiting et al., 2005; Scheuerer, 2014), and Het-
eroscedastic Censored Logistic Regression (HCLR; Messner et al., 2014).

In this case study, we apply IDR to the statistical postprocessing of ensemble
forecasts of accumulated precipitation, a variable that is notoriously difficult to
handle, due to its mixed discrete-continuous character, which requires both a point
mass at zero and a right skewed continuous component on the positive half-axis. As
competitors to IDR, we implement the BMA technique of Sloughter et al. (2007),
the EMOS method of Scheuerer (2014), and HCLR (Messner et al., 2014), which
are widely used parametric approaches that have been developed specifically for the
purposes of probabilistic quantitative precipitation forecasting. In contrast, IDR
is a generic technique and fully automatic, once the partial order on the covariate
space has been specified.

5.1. Data

The data in our case study comprise forecasts and observations of 24-hour accu-
mulated precipitation from 06 January 2007 to 01 January 2017 at meteorological
stations on airports in London, Brussels, Zurich and Frankfurt. As detailed in Ta-
ble 2, data availability differs, and we remove days with missing entries station by
station, so that all types of forecasts for a given station are trained and evaluated
on the same data. Both forecasts and observations refer to the 24-hour period from
6:00 UTC to 6:00 UTC on the following day. The observations are in the unit of
millimeter and constitute the response variable in distributional regression. They
are typically, but not always, reported in integer multiples of a millimeter (mm).

As covariates, we use the 52 members of the leading NWP ensemble operated
by the European Centre for Medium-Range Weather Forecasts (ECMWEF; Molteni
et al., 1996; Buizza et al., 2005). The ECMWF ensemble system comprises a high-
resolution member (zgrgEs), a control member at lower resolution (zcTgr) and 50
perturbed members (z1,...,250) at the same lower resolution but with perturbed
initial conditions, and the perturbed members can be considered exchangeable
(Leutbecher, 2019). To summarize, the covariate vector in distributional regres-
sion is

x = (x1,...,250, LOTR, THRES) = (LPTB; TCTR, THRES) € R%?, (27)
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where xprg = (21,...,%50) € R5Y. At each station, we use the forecasts for the
corresponding latitude-longitude gridbox of size 0.25 x 0.25 degrees, and we consider
prediction horizons of 1 to 5 days. For example, the two day forecast is initialized
at 00:00 Universal Coordinated Time (UTC) and issued for 24-hour accumulated
precipitation from 06:00 UTC on the next calendar day to 06:00 UTC on the day
after. ECMWTF forecast data are available online via the TIGGE system (Bougeault
et al., 2010; Swinbank et al., 2016)

Statistical postprocessing is both a calibration and a downscaling problem: Fore-
casts and observations are at different spatial scales, whence the unprocessed fore-
casts are subject to representativeness error (Wilks, 2019, Chapter 8.9). Indeed, if
we interpret the predictive distribution from the raw ensemble (27) as the empirical
distribution of all 52 members — a customary approach, which we adopt hereinafter
— there is a strong bias in probability of precipitation forecasts: Days with exactly
zero precipitation are predicted much less often at the NWP model grid box scale
than they occur at the point scale of the observations.

5.2. BMA, EMOS and HCLR

Before describing our IDR implementation, we review its leading competitors, namely,
state of the art parametric distributional regression approaches that have been de-
veloped specifically for accumulated precipitation.

Techniques of ensemble model output statistics (EMOS; Gneiting et al., 2005)
type can be interpreted as parametric instances of generalized additive models for
location, scale and shape (GAMLSS; Rigby and Stasinopoulos, 2005). The specific
variant of Scheuerer (2014) which we use here is based on the three-parameter family
of left-censored generalized extreme value (GEV) distributions. The left-censoring
generates a point mass at zero, corresponding to no precipitation, and the shape
parameter allows for flexible skewness on the positive half-axis, associated with rain,
hail or snow accumulations. The GEV location parameter is modeled as a linear
function of xHRES, LCTR, MPTB = % 2?21 z; and

50
1
PZERO = 5 (HiﬁHREs =0} + 1{zcTr =0} + 2; 1{x; = 0}) ,
1=

and the GEV scale parameter is linear in the Gini mean difference (22) of the 52
individual forecasts in the covariate vector (27). While all parameters are estimated
by minimizing the in-sample CRPS, the GEV shape parameter does not link to the
covariates.

The general idea of the Bayesian model averaging (BMA; Raftery et al., 2005)
approach is to employ a mixture distribution, where each mixture component is
parametric and associated with an individual ensemble member forecast, with mix-
ture weights that reflect the member’s skill. Here we use the BMA implementation
of Sloughter et al. (2007) for accumated precipitation in a variant that is based
on THRES, TCTR, MPTB = % 2?21 x; only, which we found to achieve more stable
estimates and superior predictive scores than variants based on all members, as
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proposed by Fraley et al. (2010) in settings with smaller groups of exchangeable
members. Hence, our BMA predictive CDF is of the form

F.(y) = waresG (y|rures) + werrG(y|zcTr) + wpTB G (Y| MPTB)

for y € R, where the component CDFs G(y|-) are parametric, and the weights
WHRES, WoTRr and wprp are nonnegative and sum to one. Specifically, G(y|zrnrgs)
models the logit of the point mass at zero as a linear function of /Turgs and
pares = L{zures = 0}, and the distribution for positive accumulations as a gamma
density with mean and variance being linear in /Tyres and rHrgs, respectively,
and analogously for G(y|zcrr) and G(y|mprg). Estimation relies on a two-step
procedure, where the (component specific) logit and mean models are fitted first,
followed by maximum likelihood estimation of the weight parameters and the (joint)
variance model via the EM algorithm (Sloughter et al., 2007).

Heteroscedastic censored logistic regression (Messner et al., 2014) originates from
the observation that conditional CDFs can be estimated by dichotomizing the ran-
dom variable of interest at given thresholds and estimating the probability of thresh-
old exceedance via logistic regression. The HCLR model used here assumes that
square-root transformed precipitation follows a logistic distribution censored at zero,
with location parameter linear in \/ZHRrEs, v/ZcTr and the mean of the square-root
transformed perturbed forecasts, and a scale parameter linear in the standard devi-
ation of the square-root transformed perturbed forecasts. Like EMOS, HCLR can
be interpreted within the GAMLSS framework of Rigby and Stasinopoulos (2005).

Code for BMA, EMOS and HCLR is available within the ensembleBMA, ensembleM0S
and crch packages in R (Messner, 2018). Unless noted differently, we use default
options in implementation decisions.

5.3. Choice of partial order for IDR

IDR applies readily in this setting, without any need for adaptations due to the
mixed-discrete continuous character of precipitation accumulation, nor requiring
data transformations or other types of implementation decisions. However, the
partial order on the elements (27) of the covariate space X = R®?, or on a suitable
derived space, needs to be selected thoughtfully, considering that the perturbed
members z1,...,T50 are exchangeable.

In the sequel, we apply IDR in three variants. Our first implementation is based
on THRES, ToTrR and mpTg = % 2?21 x; along with the componentwise order on
R3, in that

/ ! / /
r 22 <= mprB < MprR, TCTR < TCTRs THRES < THRES- (28)

The second implementation uses the same variables and partial order, but combined
with a simple subagging approach: Before applying IDR, the training data is split
into the two disjoint subsamples of training observations with odd and even indices,
and we average the predictions based on these two subsamples.
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Our third implementation combines the empirical increasing convex order for
rprp with the usual total order on R for xgrrs, whence

! / /
T 2T <= ZIPTB Zicx TpTBs THRES < THRES- (29)

Henceforth, we refer to the three implementations based on the partial orders in (28)
and (29) as IDR¢w, IDRgpg, and IDRjcx. With reference to the discussion preceding
Theorem 2.1, the relations (28) and (29) define preorders on R?? and partial orders
on R? and R?O x R, respectively.

We have experimented with other options as well, e.g., by incorporating the
maximum max;—1 . 502; of the perturbed members in the componentwise order
in (28), with the motivation that the maximum might serve as a proxy for the
spread of the ensemble, or by using the empirical stochastic order =g in lieu of
the empirical increasing convex order =<jcx in (29). IDR is robust to changes of this
type, and the predictive performance remains stable, provided that the partial order
honors the key substantive insights, in that the perturbed members z1, ..., x50 are
exchangeable, while zyrgs, due to its higher native resolution, is able to capture
local information that is not contained in xptg nor xcrr. Hence, xgres ought to
play a pivotal role in the partial order.

5.4. Selection of training periods

The selection of the training period is a crucial step in the statistical postprocessing
of NWP output. Most postprocessing methods, including the ones used in this
analysis, assume that there is a stationary relationship between the forecasts and the
observations. As Hamill (2018) points out, this assumption is hardly ever satisfied
in practice: NWP models are updated, instruments at observation stations get
replaced, and forecast biases may vary seasonally. These problems are exacerbated
by the fact that quantitative precipitation forecasts require large training datasets in
order to include sufficient numbers of days with non-zero precipitation and extreme
precipitation events.

For BMA and EMOS, a training period over a rolling window of the latest
available 720 days at the time of forecasting is (close to) optimal at all stations. This
resembles choices made by Scheuerer and Hamill (2015) who used a training sample
of about 900 past instances. Scheuerer (2014) took shorter temporal windows, but
merged instances from nearby stations into the training sets, which is not possible
here. In general, it would be preferable to select training data seasonally (e.g., data
from the same month), but in our case the positive effect of using seasonal training
data does not outweigh the negative effect of a smaller sample size.

As a nonparametric technique, IDR requires larger sets of training data than
BMA or EMOS. As training data for IDR, we used all data available at the time of
forecasting, which is about 2500 to 3000 days for the stations Frankfurt, Brussels
and Zurich, and 1500 days for London Heathrow. The same training periods are
also used for HCLR, where no positive effect of shorter, rolling training periods has
been observed (Messner et al., 2014).
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For evaluation, we use the years 2015 and 2016 (and 01 January 2017) for all
postprocessing methods and the raw ensemble. This test dataset consists of roughly
700 instances for each station and lead time.

5.5. Results

Before comparing the BMA, EMOS, IDRcy, IDRg,e and IDRjex techniques in terms
of out-of-sample predictive performance over the test period, we exemplify them in
Figure 4, where we show predictive CDFs for accumulated precipitation at Brussels
on December 16, 2015, at a prediction horizon of 2 days. In panel (a) the marks
at the bottom correspond to xyrgs, TcTR, the perturbed members x4, ..., x50 and
their mean mprg. The observation at 4 mm is indicated by the vertical line. Under
all four techniques, the point mass at zero, which represents the probability of no
precipitation, is vanishingly small. While the BMA, EMOS and HCLR CDFs are
smooth and supported on the positive half-axis, the IDR¢y, IDRg,s and IDRjex
CDF's are piecewise constant with jump points at observed values in the training
period. Panel (b) illustrates the hard and soft constraints on the IDR.,, CDF that
arise from (20) under the order relation (28), with the thinner lines representing the
IDR.w CDFs of direct successors and predecessors. In this example, the constraints
are mostly hard, except for threshold values between 4 and 11 mm.

We now use the mean CRPS over the test period as an overall measure of out-
of-sample predictive performance. Figure 5 shows the CRPS of the raw and post-
processed forecasts for all stations and lead times, with the raw forecast denoted
as ENS. While HCLR, performs best in terms of the CRPS, the IDR variants show
scores of a similar magnitude and outperform BMA in many instances. Figure 7 in
Appendix E shows the difference of the empirical cumulative distribution function
(ECDF) of the PIT defined at (8) to the bisector for the distributional forecasts.
All three IDR variants show a PIT-distribution close to uniform, and so do BMA,
EMOS and HCLR, as opposed to the raw ensemble, which is underdispersed.

In Figure 6 we evaluate probability of precipitation forecasts by means of the
Brier score (Gneiting and Raftery, 2007), and Figure 8 in Appendix E shows re-
liability diagrams (Wilks, 2019; Dimitriadis et al., 2021). As opposed to the raw
ensemble forecast, all distributional regression methods yield reliable probability
forecasts. BMA, IDR¢w, IDRg,, and IDR;cx separate the estimation of the point
mass at zero, and of the distribution for positive accumulations, and the four meth-
ods perform ahead of EMOS. HCLR is outperformed by BMA and the IDR variants
at lead times of one or two days, but achieves a lower Brier score at the longest lead
time of five days.

Interestingly, IDR tends to outperform EMOS and HCLR for probability of
precipitation forecasts, but not for precipitation accumulations. We attribute this
to the fact that parametric techniques are capable of extrapolating beyond the
range of the training responses, whereas IDR is not: The highest precipitation
amount judged feasible by IDR equals the largest observation in the training set.
Furthermore, unlike EMOS and HCLR, IDR does not use information about the
spread of the raw ensemble, which is inconsequential for probability of precipitation



26 Tilmann Gneiting

(@
1.00
- BMA
0.751
— EMOS
w HCLR
Q 0.50
®) IDRgy
— |IDR
0.251 509
IDRicx
0.00
30 40
(b)
1.00
0.751
LL
QO 0.50
)
0.251
0.00
0 10 20 30 40

Threshold

Fig. 4. Distributional forecasts for accumulated precipitation at Brussels, valid 16 Decem-
ber 2015 at a prediction horizon of 2 days. (a) BMA, EMOS, IDR.,, IDRs,s and IDRic
predictive CDFs. The vertical line represents the observation. (b) IDR.,, CDF along with
the hard and soft constraints in (20) as induced by the order relation (28). The thin lines
show the IDR.,, CDFs at direct predecessors and successors.

forecasts, but may impede distributional forecasts of precipitation accumulations.

In all comparisons, the forecast performance of IDR¢y and IDRgp,g is similar.
However, in our implementation, the simple subagging method used in IDRgpg Te-
duced the computation time by up to one half.

To summarize, our results underscore the suitability of IDR as a benchmark
technique in probabilistic forecasting problems. Despite being generic as well as fully
automated, IDR is remarkably competitive relative to state of the art techniques
that have been developed specifically for the purpose. In fact, in a wide range of
applied problems that lack sophisticated, custom-made distributional regresssion
solutions, IDR might well serve as a ready-to-use, top-performing method of choice.
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Fig. 5. Mean CRPS over the test period for raw and postprocessed ensemble forecasts
of 24-hour accumulated precipitation at prediction horizons of 1, 2, 3, 4 and 5 days. The
lowest mean score for a given lead time and station is indicated in green.

6. Discussion

Stigler (1975) gives a lucid historical account of the 19th century transition from
point estimation to distribution estimation. In regression analysis, we may be wit-
nessing what future generations might refer to as the transition from conditional
mean estimation to conditional distribution estimation, accompanied by a simul-
taneous transition from point forecasts to distributional forecasts (Gneiting and
Katzfuss, 2014).

Isotonic distributional regression (IDR) is a nonparametric technique for es-
timating conditional distributions that takes advantage of partial order relations
within the covariate space. It can be viewed as a far-reaching generalization of
pool adjacent violators (PAV) algorithm based classical approaches to isotonic (non-
distributional) regression, is entirely generic and fully automated, and provides for a
unified treatment of continuous, discrete and mixed discrete-continuous real-valued
response variables. Code for the implementation of IDR within R (R Core Team,
2020) and Python (https://www.python.org/) is available via the isodistrreg
package at CRAN (https://CRAN.R-project.org/package=isodistrreg) and on
github (https://github.com/AlexanderHenzi/isodistrreg; https://github.
com/evwalz/isodisreg), with user-friendly functions for partial orders, estima-
tion, prediction and evaluation.

IDR relies on information supplied by order constraints, and the choice of the
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Fig. 6. Mean Brier score over the test period for probability of precipitation forecasts at
prediction horizons of 1, 2, 3, 4 and 5 days. The lowest mean score for a given lead time
and station is indicated in green.

partial order on the covariate space is a critical decision prior to the analysis. Only
variables that contribute to the partial order need to be retained, and the order
constraints serve to regularize the IDR solution. Weak orders lead to increased
numbers of comparable pairs of training instances and predictive distributions that
are more regular. The choice of the partial order is typically guided and informed
by substantive expertise, as illustrated in our case study, and it is a challenge for
future research to investigate whether the selection of the partial order could be
automated. Given that IDR gains information through order constraints, it is a
valid concern whether it is robust under misspecifications of the partial order. There
is evidence that this is indeed the case: IDR has guaranteed in-sample threshold
calibration (Theorem 2.2) and therefore satisfies a minimal requirement for reliable
probabilistic forecasts under any (even misspecified) partial order. Moreover, El
Barmi and Mukerjee (2005, Theorem 7) show that in the special case of a discrete,
totally ordered covariate, isotonic regression asymptotically has smaller estimation
error than non-isotonic alternatives even under mild violations of the monotonicity
assumptions, akin to the performance of IDR in the non-isotonic setting (25) in our
simulation study.

Unlike other methods for distributional regression, which require implementa-
tion decisions, such as the specification of parametric distributions, link functions,
estimation procedures and convergence criteria, to be undertaken by users, IDR is
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fully automatic once the partial order and the training set have been identified. In
this light, we recommend that IDR be used as a benchmark technique in distribu-
tional regression and probabilistic forecasting problems. With both computational
efficiency and the avoidance of overfitting in mind, IDR can be combined with sub-
sample aggregation (subagging) in the spirit of random forests. In our case study
on quantitative precipitation forecasts, we used simplistic ad hoc choices for the size
and number of subsamples. Future research on computationally efficient algorithmic
implementations of IDR as well as optimal and automated choices of subsampling
settings is highly desirable.

A limitation of IDR in its present form is that we only consider the usual stochas-
tic order on the space P of the conditional distributions. Hence, IDR is unable to
distinguish situations where the conditional distributions agree in location but differ
in spread, shape or other regards. This restriction is of limited concern for response
variables such as precipitation accumulation or income, which are bounded below
and right skewed, but may impact the application of IDR to variables with sym-
metric distributions. In this light, we encourage future work on ramifications of
IDR, in which P is equipped with partial orders other than the stochastic order,
including but not limited to the likelihood ratio order (Mdosching and Diimbgen,
2020a). Similarly, the “spiking” problem of traditional isotonic regression, which
refers to unwarranted jumps of estimates at boundaries, arguably did not have ad-
verse effects in our simulation and case studies. However, it might be of concern in
other applications, where remedies of the type proposed by Wu et al. (2015) might
yield improvement and warrant study.

Another promising direction for further research are generalizations of IDR to
multivariate response variables. In weather prediction, this would allow simulta-
neous postprocessing of forecasts for several variables, and an open question is for
suitable notions of multivariate stochastic dominance that allow efficient estimation
in such settings.
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A. Proofs for Section 2.2

Proof of Theorem 2.1. Let A be the lattice of all subsets of {1,...,n} that yield
admissible superlevel sets for an increasing function {z1,...,z,} — R. More pre-
cisely, a set A C {1,...,n} belongs to A if and only if for any i € A and any z;
with x; < z; it follows that j € A.

Let z € R. By Jordan et al. (2021, Theorem 1 and Lemma 4), the minimizer of
the criterion

S - 1z 2 i) (30)

over all p (P1,--.,pn) € R}, is uniquely determined and given by F (z) =

(F1(2),...,F,(2)) € R™ with

. 1
() = mi e D <
Fiz) AeieA AeA A ca #(A\A) A Moy < 2} oy
J

for i = 1,...,n, where #B denotes the cardinality of a set B. From the definition
of the CRPS it is clear that F' minimizes {crps(F’) over all tuples of functions F' =
(F1,..., Fp) with F; : R — R such that for each z € R, (Fi(2),...,Fa(2)) € RT .
It remains to show that for each ¢ = 1,...,n, F; is a valid CDF.

Let i € {1,...,n}, 2 <2/, BC{l,...,n}. It is clear from (31) that the domain
of Fj in [0, 1]. Furthermore,

1 1
2B Z {y; <z} < 4B Z 1{y; < 7'}, (32)
JjEB jE€B
and therefore, by (31), F;(z) < Fj(2’). The function F; is also right-continuous
because for 2’ | z, the right-hand side of (32) converges to the left-hand side. Finally,
for 2 — 400 the left-hand side of (32) converges to zero and one, respectively, which
concludes the proof. O

Proof of Theorem 2.2. First, we show threshold calibration. Let (X,Y) be a ran-
dom vector with distribution (1/n)3 i 6z, ,,) where d(,, . denotes the Dirac
measure at (z;,y;). Let z € R. By Lee (1983, Theorem 6.4), there exists a partition
{Bm}M_, of {1,...,n} such that

M
F(z)=Fo(2) =Y 1{ie Bm}#le S 1y, < 2}

m=1 JE€EBm
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Therefore, the o-algebra generated by Fx(z) is contained in the o-algebra generated
by { B, }M_, with B,, = {(x;,;) : i € By, }. Furthermore,

E(1{Y < 2}1{(X,Y) € Bp}) = % S 1y, < 2}
JjE€Bm

=E (Fx(2)1{(X,Y) € Bn}) .

Part i) for the scoring rules of type (12) follows directly from the arguments
in the proof of Theorem 2.1. Let z € R. By Jordan et al. (2021, Theorem 1 and
Lemma 4) the solution F'(z) at (31) is not only the unique minimizer of the criterion
(30) but also the unique solution that minimizes

SS e <)~ 1y < 2D (e~ 1y < 7)) (33)

i=1

over all p = (p1,...,pn) € R}, simultaneously for all c € (0,1). As F e Pz, and
(1/n) > 1 Sz c(Fi, yi) is equal to the expression at (33) with p; = Fj(z), we obtain
the claim.

Part iii) is a direct consequence of the arguments for the second part of part
i) and the representation theorem of Schervish (1989) for proper scoring rules of
binary events.

Let « € (0,1). Concerning part ii), observe that any function s, satisfying the
requirements of the theorem can be written as [ Sgﬂ(q, y) dh(#) for some Borel
measure h on R; see Ehm et al. (2016, Theorem 1). Here,

].—057 y§9<Q7

89 5(a,y) = q<6<y,
0, otherwise.

By Jordan et al. (2021, Theorem 1 and Proposition 5) there exists a unique solution
d(a) = (@1(a), ..., qn(a)) € R}, that minimizes

1 ~¢
n ngﬂ(Qbyi)
i=1

over all ¢ = (q1,...,qn) € Rﬁz simultaneously over all # € R such that for each
i €{1,...,n}, Gi(a) is the lower a-sample-quantile of some subset of observations
B; C{y1,...,yn}. Indeed, the solution has a max-min representation as in (31) with

the empirical mean of the indcators replaced by the lower a-sample quantile over
all observations in A\ A’. The max-min representation for ¢;(a) yields that ¢;(-) is
increasing and left-continuous because lower a-sample-quantiles are increasing and
left-continuous as a function of «. Therefore, ¢;(-) is a valid quantile function for
each i = 1,...,n, and the generalized inverse §=! = ((jfl, ..., 41 is a member of
[
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Since SSQ(F, y) = gaQG(Ffl(oz),y) for any CDF F, it follows from (3) that §=!
is a CRPS-based isotonic regression of y on . To conclude the proof of part ii), it

remains to note that §~' = F due to the uniqueness of F. The initial statement in
part i) is now also immediate. O

B. Proofs and remarks for Section 2.4

The proof of Theorem 2.3 requires the following lemma, which is established in
Mosching and Diimbgen (2020b, Theorem 4.6).

Lemma B.1. Let Zy,Zs,... be independent random variables with distribution
functions G1,Go, ..., respectively. For k=1,2,..., let

k
Ge()= 1 Y UZ <) and Gal) =

i=1

k
>_Gil):
i=1
Then there exists a universal constant M < 25/%2¢ such that for all n >0,

P (VEIIGx — Gilloo = n) < M exp(—20?),

=

where || - ||oo denotes the usual supremum norm of functions.

Proof of Theorem 2.3. Let €, > 0. By assumption (iv), there exists r > 0 such
that
€
sup{|Fu(y) — Fur(y)| : w,2" € [0,1]%, |z — 2’| < v,y €R} < T (34)

Let m = max([2/r],[2/d] + 1) and define intervals Iy = [0,1/m] and I; = ((j —
1)/m,j/m] for j = 2,...,m. For indices j1,...,jq € {1,...,m}, let I(j1,...,Jq) =
XZ:J i C [0, 1], The collection of such rectangles, which we denote by R, parti-
tions [0, 1]% into m? disjoint subsets with SUD, wer(jr,.j0) 1T — 2| < /2.

By assumption (i), for each J € R, there exists ¢; > 0 such that with asymp-
totic probability one, #(S, N J) > ncy. Define ¢ = minjer ¢y > 0, so that with

asymptotic probability one, #(S,, N J) > nc > 0. We assume in the following that

for (Xn1,Yan), -, (Xnn, Yan) the event in assumption (i) occurs for all J € R as
well as the event in assumption (ii). To ease notation, we drop the subscript n.
Let 2 = (z1,...,24) € [6,1-0]% Then2/m < § < minj—y. g ; and max;—; _ q4; <

1 -6 < (m —2)/m, and there exist indices ji,...,jq € {3,...,m — 2} such that
x € I(j1,...,Ja). Define

L(x)=I<j1—1,...,jd—1), U(w):I(]1+1,,jd+1)
Then v < x < w for all v € L(x) and w € U(z), and

sup |lv—z|| <7, sup |lw—=z| <r.
veL(x) wel(z)

We see from (34) that

sup |Fo(y) — Fe(y)] <
veL(z)UU (z),yER

)

e
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whereas the bounds in (16) give
Fx,(y) < Fuly) < Fx,(y), y€R, Xy €U(x), X; € L(x).
Consequently, for y € R,

~

~ €
E(y) — Fu(y)| < Fx (1) — Fx. -
[P (y) ()l j:Xjergl(ggw(w)l X, () — Fx,(y)| + 1

. €
S sup ‘FXJ(y>_FXg(y)|+Z>
J:X;€(1/m,(m—1)/m]¢,y€R
and this upper bound does not depend on x. Therefore, it is sufficient to show that
. ~ 3e
lim P sup By, () - P, = 2= ) =0. (35)
o0\ X € (1/m,(m—1)/m]?, yer 4

Let A, be the collection of upper sets in S,. By the min-max formula for
antitonic regression, for j = 1,...,n and y € R,
. 1
Fy (y) = i _— 1{Y; < y}.
% () Aeﬂl}QjeAA/eE:%(XjeA/ #(A\A) Z Y=y}
X, €A\A’
For X; € (1/m,(m — 1)/m]%, let j; = max{k : k/m < X;;} —1 and z; =
(j1/m, ..., j54/m) € RY, Here, X,; denotes the i-th component of X;. Then, for all
v € [z, X;] == {u€[0,1]?: x; <u =< X,} it holds that |v—X;|| < 2/m < r. There-
fore, inequality (34) along with assumption (iii) imply that for all ¢ in {1,...,n}
such that X; = x;,

€
Fx,(y) < Fp,(y) < Fx,(y) + 1 VER

Consequently, with A; = {v € [0,1]¢ : v = 2},

- 1 €

Fx. — Fx. < _— 1{Y; < — Fx, —.
X, €A \AY

By the definition of ji, ..., jq4, I(]l +1,...,9¢+ 1) - [JJj,Xj] - Aj \A/ for A" € A,

with X; & A’. Therefore, #(A4; \ A’) > cn > 0, where ¢ is the constant introduced

at the beginning of the proof. Lemma B.1 implies that for all A" C A; with X; ¢ A’,

conditional on X1,..., X,

P| sup

| O (HYi<w) - Fa)| 2 4 | < Mew(—gén)

X, €A \A

with a constant M < 25/2¢ that does not depend on j. In view of the Bonferroni
inequality we get the upper bound

R 3
Plsup (B, (n) - Fx,) =2 ) < 3 Mewp(-Sen)
yeR J ’ 4 2

ATEAX,; gA

< #(Ay) Mexp (*%6271) ,
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which does not depend on j.

For A e Ay, let m(A) = {zr € A: 2 € Az Rz = 2z =1z} C A be
the associated set of minimal elements. Then A = A’ <= m(A) = m(A) for
A, A" € A,, and so the number of upper sets in S,, equals the number of antichains.
The size of a maximal antichain, which we denote by s, satisfies s, > 1 and, by
assumption (ii), s, < n?. So if n is sufficiently large, n” < n/2 and

Sn n! 5 n!
A<D (&) = e sogioms = Vo=

By Stirling’s formula, the right hand side is asymptotically equivalent to

V2mn (n/e)”
2r(n —nY) ((n —nY)/e)"~""/2mnY (n7/e)™"
n=7/? n"
27-‘-(]_ — n'yfl) (n — n’}’)nfnvnfynw
— 1 n—7/2+n7(1—7)(1 _ nv—l)n”—n
27(1 —ny—1)

~ V2 1_ TR <<_% (=) logn) (1 ==y

nY

where the factor (1 —nY~1)"" =" = (1 —nY=1)"" ")~ (1=2""") grows no faster than
exp(n?), because (1 — 1/x)* < exp(—1) for x > 1. Combining these results, we see
that for n sufficiently large, #(A,) < exp(Cyn” logn), where C} is a constant that
depends on . Hence, for n sufficiently large,

yER

R 3¢ C
P <sup (Fx, () - Fx,(9)) = 4> < #(An) Mexp (—5e™n)
< M exp (—ge2n + C1n” log n)
< M exp (—C2n)

for some strictly positive constant C5 that depends on «. This upper bound does
not depend on j, so

N 3e
P sup (Fx,w) = Fx, ) 2 2 | < Mexp(~Cann
7:X,;€(1/m,(m—1)/m]r, yeR

vanishes as n — oo. Analogous arguments yield the bound with Fy, and FXj
interchanged, which establishes (35) and completes the proof. ]

As noted, the broad applicability of Theorem 2.3 rests on a powerful combinato-
rial result of Brightwell (1992, Corollary 2), which enables us to deduce consistency
without having to check complex regularity conditions of the type in Robertson and
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Wright (1975). The size of a maximal antichain also appears in the derivation of risk
bounds for multiple isotonic regression for the mean in Han et al. (2019, p. 2447,
and Lemma 4 in their Supplementary Material). Their Lemma 4 gives an asymp-
totic lower bound of n!~1/4 for the size of a maximal antichain among n independent
and identically distributed covariates X1,..., X, € R? with any Lebesgue density
bounded from above, and might in fact also be derived from Brightwell (1992, Corol-
lary 2). An intuitive explanation for the lower bound n!=1/4 ig that any distribution
with bounded Lebesgue density can be restricted to a fixed subset where the density
is positive, and asymptotically the maximum antichain of Xi,...,X,, within this
subset behaves as if X; ~ Unif[0, 1]¢, regardless of the dependence structure. This
is an interesting result, because if the speed of convergence hinges on the maximal
size of an antichain, as our proof and results in Han et al. (2019) suggest, then it
may not be possible to improve the speed of convergence by assuming positively
correlated components. Therefore, we believe that positive dependency between
the components of the covariate vector does not affect convergence rates, though
clearly it may have positive effects in finite sample settings.

C. Proofs for Sections 3.2 and 3.3

Proof of Proposition 3.2. Denote the CDF corresponding to the empirical distribu-
tion of x1,...,2q and of 27,...,2), by F' and G, respectively. For part i), assume
that z(;) < x’(i) fori=1,...,d, and let z € R. Then,

#{ixg) <z} - #{i: fﬁl(i) <z} _

Fz) = d = d

G(y),

hence F' is smaller than G in the usual stochastic order. Conversely, if F' is smaller
then G, by choosing z = x’(k), k=1,...,d, we obtain

#{i 2 < x’(k)} #{i: x’(i) < a:’(k)}
d d '

By definition of the k-th order statistic, we know that #{i : 33,(1') < m’(k)} > k (with
equality if the z} are distinct). Therefore, #{i : z(; < ZL‘/(k)} > k. This can only be

= F(z(y) = Glag,) =

true if 2, < x’(k).
Concerning part ii), we can assume without loss of generality that z1 < zo <

-+- < x4, otherwise we reorder the pairs (x;,y;). Now apply part i): We know that

z1 <z} and iL'l(l) > x; for some j. But the components of x are sorted, hence

x’(l) > xj > x1 = (1), and also zy > x’(l) > z;. So we can think of the positions of
z} and le) in 2’ to be exchanged, without violating the condition z < z’. Now we
can ignore the pair (zf, x’(l)) and proceed in the same way for remaining components
(331‘)?:2 and (xg)g:?

For the proof of part iii), assume the opposite, i.e., z; >z, for i = 1,...,d. By
ii), we know that x = 2’. By assumption x <4 2/, hence z and 2" are permutations
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of each other. But then either x = 2/, or z and 2’ cannot be comparable in the
componentwise order.
The last part is immediate from part i). O

Proof of Proposition 3.3. Part i) is a consequence of Theorem 4.A.3 of Shaked and
Shanthikumar (2007). Part ii) follows from part i) and Proposition 3.2 i). For part
iii) note that the Gini mean difference has the equivalent formula

9 d
g(z) = = > w2 —d-1),
=1

which can be rewritten as

4 d d d—|—1 d
g(m):d(dl);;gc 1);”
Part i) implies that
d+1 <&
9<$’>+2d<d—1>21' —122‘7”

=1 j=i

d+1 d
T 3o S = 2 S
i j=i i=1

D. Large sample equivalence of CRPS and L, measures

Here we show that the difference between the mean CRPS for the distributional
regression method at hand and the mean CRPS for the ideal forecast is large sample
equivalent to the (squared) Ly error in conditional distribution estimation. This
relates the CRPS, as introduced by Matheson and Winkler (1976) and arguably
the most prevalent measure of predictive performance in distributional forecasting
(Gneiting and Raftery, 2007), to traditional L, measures, as used by Hall et al.
(1999) and Spady and Stouli (2018) in the evaluation of conditional cumulative
distribution function (CDF) estimation.

Specifically, suppose that the random variates (x1,¥1),- .., (Tm, Ym) are indepen-
dent identically distributed from a population with bivariate law G. Let F(Y|X)
be any estimate of the conditional distributions of Y given X, and fori =1,...,m
let F; =F(Y | X =x;) and G; = G(Y | X = ;) denote the respective conditional
CDFs for x4, ..., x;,. Subject to the conditions of the bivariate strong law of large
numbers,

_ 1 —
S =~ > CRPS(F;,4:) = E(x.y)e [CRPS(F(Y]X), Y)]

=1
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and
_ 1 X
St = — > CRPS(Gy,3:) = E(xy)nc [CRPS(G(Y]X), V)]
i=1
almost surely. Therefore, subject to the conditions of the strong law and Fubini’s
theorem,

St — S = Ex~c Eyo(yix) [CRPS(F(Y|X),Y) — CRPS(G(Y|X),Y) | X]

[ w1 x) - 6w x)Pa

—0o0

=Ex~q

= Ex~c [L3(F(-| X),G(- | X))]

almost surely, where the first equality uses the analytic form of the CRPS divergence
(Gneiting and Raftery, 2007, p. 367).

In the context of the simulation study in Section 4, the above setting corresponds
to a single of the 500 Monte Carlo replicates, where F' is an estimate on a training
set of size n, and performance is evaluated on an independent test sample of size
m = 5000. The large sample arguments remain valid when scores are averaged
across Monte Carlo replicates.

E. Additional tables and figures

Table 3 provides implementation details for the distributional regression methods
in the simulation study in Section 4.

Figure 7 assesses the probabilistic calibration of the postprocessing methods for
precipitation forecasts in the case study in Section 5. Similarly, Figure 8 shows re-
liability diagrams for the postprocessed probability of precipitation forecasts, using
the CORP approach developed by Dimitriadis et al. (2021).
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Table 3. Implementation details for the distributional regression methods in the simula-
tion study. We list the R packages and the specific functions used for estimation and
prediction, along with choices for tuning parameters. For nonparametric kernel smooth-
ing (NP) we use Gaussian kernels in (23), (24), and (25) and the liracine kernel in
the Poisson scenario (26). To fit semiparametric quantile regression (SQR) and condi-
tional transformation models (TRAM) we employ cubic B-splines with interior knots from
2 to 8 in steps of 2 and boundary knots 0 and 10 (bs(x, ...)). For TRAM, we use
continuous outcome logistic regression (Colr) for (23), (24), and (25), and ordered cat-
egorical regression (Polr) in (26). For further detail, see the code, which is available at
https://github.com/AlexanderHenzi/isodistrreg.

Package
NP np (Hayfield and Racine, 2008)
SQR quantreg (Koenker, 2020)
TRAM | tram (Hothorn, 2020)
QRF grf (Tibshirani et al., 2020)

IDR isodistrreg
IDRgpe | isodistrreg

Estimation
NP npcdistbw(nmulti = 4, oykertype = "liracine", bwtype = adaptive.nn")
SQR rq(y~., data = cbind(y = y, bs(x, ...)), tau = seq(0.005,0.995,0.001))
TRAM | Colr/Polr(y~., data = cbind(y = y, bs(x, ...)))

QRF quantile_forest(min.node.size = 40, quantiles = seq(0.01,0.99,0.01))
IDR idr )
IDRg,g | idrbag(b = 100, digits = 6, p = 1/2)

Prediction
NP npcdist (eydat
SQR predict.rgs()
TRAM | predict.ctm(K = 5000, type = "distribution")
QRF predict.quantile_forest(quantiles = seq(0.005,0.995,0.001))
IDR predict.idrfit(digits = 6)
IDRge | idrbag(b = 100, digits = 6, p = 1/2)

grid)
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